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Chapter 2, Section 2.7

(7) Suppose that for a single-serve queue with exponential arrivals and exponential service distributions, the arrival rate λ
suddenly doubles to 2λ, while the service rate µ remains unchanged. Suppose also that the ratio λ

µ , which was 1
3 , is now

2
3 . How does the average time spent in the queue change, and how does the average number of units in the queue change?

Solution:

i) For the average time spent in the queue: let Wλ be the waiting time in line before the doubling of λ. Let W2λ be the
waiting time after the doubling of λ. Then,
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=

(
µ

µ− 2λ

)[
1

3

1

µ− λ

]
Since

µ

λ
= 3

=
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Therefore,
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)
Wλ =⇒W2λ =Wλ+
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)
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In order for the queue not to explode, we must have µ > 2λ. Therefore 2µ−2λ
µ−2λ > 1, so the average time spent in the

queue will increase by a factor of
2µ− 2λ

µ− 2λ
relative to Wλ.

ii) For the average number of units in the queue: let Lλ be the length of the line before the doubling of λ. Let L2λ be
the waiting time after the doubling of λ. Also, let n be the number of people in the system.Then,

Lλ =

{
n-1 if n > 0

0 if n = 0

We know that P (Lλ = 0) = p0 + p1 and P (Lλ = l) = pl+1, for l > 0 i.e., there are l+ 1 people in the system so that
one is being serve and l are in line. We can compute the expected value of this random variable:
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E[Lλ] =
∑
l

l · P (Lλ = l) by definition of expected value

=
∞∑
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∞∑
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) ∞∑
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)2 sum of geometric series

Replacing for the ratio λ
µ = 1

3 we get:

E[Lλ] =

(
1

3

)2(
1− 1

3

)
1(

1− 1

3

)2 =
1

9

2

3

1(
2

3

)2 =
1

9

2

3

9

4
=

1

6

The same equation holds for E[L2λ], we only have to replace the appropriate ratio λ
µ = 2

3 .
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Even tough the arrival rate λ only doubled, the average length of the queue grew by a factor of 8 since:

8 · E[Lλ] = 8 · 1
6
=

4

3
= E[L2λ]

So the new average length is eight times longer than the previous one.
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