M447 - Mathematical Models/Applications 1 - Homework 3

Enrique Areyan
 September 16, 2014

Chapter 2, Section 2.7

(7) Suppose that for a single-serve queue with exponential arrivals and exponential service distributions, the arrival rate λ suddenly doubles to 2λ, while the service rate μ remains unchanged. Suppose also that the ratio $\frac{\lambda}{\mu}$, which was $\frac{1}{3}$, is now $\frac{2}{3}$. How does the average time spent in the queue change, and how does the average number of units in the queue change?

Solution:

i) For the average time spent in the queue: let W_{λ} be the waiting time in line before the doubling of λ. Let $W_{2 \lambda}$ be the waiting time after the doubling of λ. Then,

$$
\begin{array}{rlr}
W_{2 \lambda}-W_{\lambda} & =\left[\frac{2}{3}\left(\frac{1}{\mu-2 \lambda}\right)\right]-\left[\frac{1}{3}\left(\frac{1}{\mu-\lambda}\right)\right] \\
& =\frac{1}{3}\left[\frac{2}{\mu-2 \lambda}-\frac{1}{\mu-\lambda}\right] \\
& =\frac{1}{3}\left[\frac{2(\mu-\lambda)-(\mu-2 \lambda)}{(\mu-2 \lambda)(\mu-\lambda)}\right] & \\
& =\frac{1}{3}\left[\frac{\mu}{(\mu-2 \lambda)(\mu-\lambda)}\right] \quad \text { Since } \frac{\mu}{\lambda}=3 \\
& =\left(\frac{1}{3} \frac{\mu}{\lambda} \frac{\mu}{(\mu-2 \lambda)}\right)\left[\frac{\lambda}{\mu} \frac{1}{\mu-\lambda}\right] \quad \text { Multiplying by } \frac{\mu}{\lambda} \frac{\lambda}{\mu}=1 \\
& =\left(\frac{\mu}{\mu-2 \lambda}\right)\left[\frac{1}{3} \frac{1}{\mu-\lambda}\right] \quad \\
& =\left(\frac{\mu}{\mu-2 \lambda}\right) W_{\lambda}
\end{array}
$$

Therefore,

$$
W_{2 \lambda}-W_{\lambda}=\left(\frac{\mu}{\mu-2 \lambda}\right) W_{\lambda} \Longrightarrow W_{2 \lambda}=W_{\lambda}+\left(\frac{\mu}{\mu-2 \lambda}\right) W_{\lambda} \Longrightarrow W_{2 \lambda}=W_{\lambda}\left(1+\frac{\mu}{\mu-2 \lambda}\right) \Longrightarrow W_{2 \lambda}=\left(\frac{2 \mu-2 \lambda}{\mu-2 \lambda}\right) W_{\lambda}
$$

In order for the queue not to explode, we must have $\mu>2 \lambda$. Therefore $\frac{2 \mu-2 \lambda}{\mu-2 \lambda}>1$, so the average time spent in the queue will increase by a factor of $\frac{2 \mu-2 \lambda}{\mu-2 \lambda}$ relative to W_{λ}.
ii) For the average number of units in the queue: let L_{λ} be the length of the line before the doubling of λ. Let $L_{2 \lambda}$ be the waiting time after the doubling of λ. Also, let n be the number of people in the system. Then,

$$
L_{\lambda}= \begin{cases}\mathrm{n}-1 & \text { if } n>0 \\ 0 & \text { if } n=0\end{cases}
$$

We know that $P\left(L_{\lambda}=0\right)=p_{0}+p_{1}$ and $P\left(L_{\lambda}=l\right)=p_{l+1}$, for $l>0$ i.e., there are $l+1$ people in the system so that one is being serve and l are in line. We can compute the expected value of this random variable:

$$
\begin{array}{rlr}
E\left[L_{\lambda}\right] & =\sum_{l} l \cdot P\left(L_{\lambda}=l\right) & \text { by definition of expected value } \\
& =\sum_{l=0}^{\infty} l \cdot p_{l+1} & \text { by definition of } L_{\lambda} \\
& =\sum_{l=0}^{\infty} l \cdot\left(\frac{\lambda}{\mu}\right)^{l+1}\left(1-\frac{\lambda}{\mu}\right) & \text { according to our probabilities } p_{n} \\
& =0+\left(\frac{\lambda}{\mu}\right)^{2}\left(1-\frac{\lambda}{\mu}\right) \sum_{l=1}^{\infty} l \cdot\left(\frac{\lambda}{\mu}\right)^{l-1} & \text { algebra } \\
& =\left(\frac{\lambda}{\mu}\right)^{2}\left(1-\frac{\lambda}{\mu}\right) \frac{1}{\left(1-\frac{\lambda}{\mu}\right)^{2}} & \text { sum of geometric series }
\end{array}
$$

Replacing for the ratio $\frac{\lambda}{\mu}=\frac{1}{3}$ we get:

$$
E\left[L_{\lambda}\right]=\left(\frac{1}{3}\right)^{2}\left(1-\frac{1}{3}\right) \frac{1}{\left(1-\frac{1}{3}\right)^{2}}=\frac{1}{9} \frac{2}{3} \frac{1}{\left(\frac{2}{3}\right)^{2}}=\frac{1}{9} \frac{2}{3} \frac{9}{4}=\frac{1}{6}
$$

The same equation holds for $E\left[L_{2 \lambda}\right]$, we only have to replace the appropriate ratio $\frac{\lambda}{\mu}=\frac{2}{3}$.

$$
E\left[L_{2} \lambda\right]=\left(\frac{2}{3}\right)^{2}\left(1-\frac{2}{3}\right) \frac{1}{\left(1-\frac{2}{3}\right)^{2}}=\frac{4}{9} \frac{1}{3} \frac{1}{\left(\frac{1}{3}\right)^{2}}=\frac{4}{9} \frac{1}{3} \frac{9}{1}=\frac{4}{3}
$$

Even tough the arrival rate λ only doubled, the average length of the queue grew by a factor of 8 since:

$$
8 \cdot E\left[L_{\lambda}\right]=8 \cdot \frac{1}{6}=\frac{4}{3}=E\left[L_{2 \lambda}\right]
$$

So the new average length is eight times longer than the previous one.

