M447 - Mathematical Models/Applications 1 - Homework 3

Enrique Areyan September 16, 2014

Chapter 2, Section 2.7

 $W_{2\lambda}$

(7) Suppose that for a single-serve queue with exponential arrivals and exponential service distributions, the arrival rate λ suddenly doubles to 2λ , while the service rate μ remains unchanged. Suppose also that the ratio $\frac{\lambda}{\mu}$, which was $\frac{1}{3}$, is now $\frac{2}{3}$. How does the average time spent in the queue change, and how does the average number of units in the queue change?

Solution:

i) For the average time spent in the queue: let W_{λ} be the waiting time in line before the doubling of λ . Let $W_{2\lambda}$ be the waiting time after the doubling of λ . Then,

$$-W_{\lambda} = \left[\frac{2}{3}\left(\frac{1}{\mu-2\lambda}\right)\right] - \left[\frac{1}{3}\left(\frac{1}{\mu-\lambda}\right)\right]$$
$$= \frac{1}{3}\left[\frac{2}{\mu-2\lambda} - \frac{1}{\mu-\lambda}\right]$$
$$= \frac{1}{3}\left[\frac{2(\mu-\lambda) - (\mu-2\lambda)}{(\mu-2\lambda)(\mu-\lambda)}\right]$$
$$= \frac{1}{3}\left[\frac{\mu}{(\mu-2\lambda)(\mu-\lambda)}\right]$$
$$= \left(\frac{1}{3}\frac{\mu}{\lambda}\frac{\mu}{(\mu-2\lambda)}\right)\left[\frac{\lambda}{\mu}\frac{1}{\mu-\lambda}\right]$$
Multiplying by $\frac{\mu}{\lambda}\frac{\lambda}{\mu} = 1$
$$= \left(\frac{\mu}{\mu-2\lambda}\right)\left[\frac{1}{3}\frac{1}{\mu-\lambda}\right]$$
Since $\frac{\mu}{\lambda} = 3$
$$= \left(\frac{\mu}{\mu-2\lambda}\right)W_{\lambda}$$

Therefore,

$$W_{2\lambda} - W_{\lambda} = \left(\frac{\mu}{\mu - 2\lambda}\right) W_{\lambda} \Longrightarrow W_{2\lambda} = W_{\lambda} + \left(\frac{\mu}{\mu - 2\lambda}\right) W_{\lambda} \Longrightarrow W_{2\lambda} = W_{\lambda} \left(1 + \frac{\mu}{\mu - 2\lambda}\right) \Longrightarrow \left[W_{2\lambda} = \left(\frac{2\mu - 2\lambda}{\mu - 2\lambda}\right) W_{\lambda}\right]$$

In order for the queue not to explode, we must have $\mu > 2\lambda$. Therefore $\frac{2\mu - 2\lambda}{\mu - 2\lambda} > 1$, so the average time spent in the queue will increase by a factor of $\frac{2\mu - 2\lambda}{\mu - 2\lambda}$ relative to W_{λ} .

ii) For the average number of units in the queue: let L_{λ} be the length of the line before the doubling of λ . Let $L_{2\lambda}$ be the waiting time after the doubling of λ . Also, let n be the number of people in the system. Then,

$$L_{\lambda} = \begin{cases} n-1 & \text{if } n > 0\\ 0 & \text{if } n = 0 \end{cases}$$

We know that $P(L_{\lambda} = 0) = p_0 + p_1$ and $P(L_{\lambda} = l) = p_{l+1}$, for l > 0 i.e., there are l + 1 people in the system so that one is being serve and l are in line. We can compute the expected value of this random variable:

by definition of expected value

$$\sum_{l=0}^{\infty} l \cdot p_{l+1}$$

 $= \sum_{l=0}^{\infty} l \cdot \left(\frac{\lambda}{\mu}\right)^{l+1} \left(1 - \frac{\lambda}{\mu}\right)$

 $= \left(\frac{\lambda}{\mu}\right)^2 \left(1 - \frac{\lambda}{\mu}\right) \frac{1}{\left(1 - \frac{\lambda}{\mu}\right)^2}$

 $= 0 + \left(\frac{\lambda}{\mu}\right)^2 \left(1 - \frac{\lambda}{\mu}\right) \sum_{l=1}^{\infty} l \cdot \left(\frac{\lambda}{\mu}\right)^{l-1}$

 $E[L_{\lambda}] = \sum_{l} l \cdot P(L_{\lambda} = l)$

=

by definition of L_{λ}

according to our probabilities p_n

algebra

sum of geometric series

Replacing for the ratio $\frac{\lambda}{\mu} = \frac{1}{3}$ we get:

$$E[L_{\lambda}] = \left(\frac{1}{3}\right)^2 \left(1 - \frac{1}{3}\right) \frac{1}{\left(1 - \frac{1}{3}\right)^2} = \frac{1}{9} \frac{2}{3} \frac{1}{\left(\frac{2}{3}\right)^2} = \frac{1}{9} \frac{2}{3} \frac{9}{4} = \frac{1}{6}$$

The same equation holds for $E[L_{2\lambda}]$, we only have to replace the appropriate ratio $\frac{\lambda}{\mu} = \frac{2}{3}$.

$$E[L_2\lambda] = \left(\frac{2}{3}\right)^2 \left(1 - \frac{2}{3}\right) \frac{1}{\left(1 - \frac{2}{3}\right)^2} = \frac{4}{9} \frac{1}{3} \frac{1}{\left(\frac{1}{3}\right)^2} = \frac{4}{9} \frac{1}{3} \frac{9}{1} = \frac{4}{3}$$

Even tough the arrival rate λ only doubled, the average length of the queue grew by a factor of 8 since:

$$8 \cdot E[L_{\lambda}] = 8 \cdot \frac{1}{6} = \frac{4}{3} = E[L_{2\lambda}]$$

So the new average length is eight times longer than the previous one.